

Permit Registration Documents included in this Appendix:

Y/N	Permit Registration Document
	Notice of Intent
Y	Risk Assessment
	Certification
	Post-Construction Water Balance
	Copy of Annual Fee Receipt
	ATS Design Documents
	Site Map, see Appendix B

K FACTOR:

Caltrans Water Quality Planning Tool

The Water Quality Planning Tool was created to help planners and designers comply with environmental permits. It uses a map interface to find information based on a project's location. This application is being updated for digital accessibility and will continue to function while updates are in progress. Coastal Zone D Counties Geologic Map 22 월 Flood Hazard Areas High Risk Receiving Watersheds Monthly Precipitation @ MS4 Areas Soil K-Factor: 0.32 ПX RWQCB Boundaries Soil K-Factor 0.32 to a sol-avoid big factor (K) represents: (1) the susceptibility of soil or surface material be evolved. (2) the transportability of the sediment and (3) the amount and rate of monofigien a particular rainfall input, as measured under a standard condition. Finaestrustical soil that are high in city have low K values (about 0.05 to 0.15) because the particles are resistent to detachment. Co are-stexumed soils, such as and/y soils, also have low K values (about 0.05 to 0.25) because of high infitization resulting in low monofis although these particles are easily detached. Medium-testured soils, such as a sit loam, have moderate k values (about 0.25 to 0.45) because they are monomial to a standard to a sit loam. 👂 🐵 USGS Topo Maps Watershed Boundary Dataset ♥ Wetlands T
Soil Risk Level Determination D Soil Details Erosivity Index
Soil K Factor (Soil R Factor Soil LS Factor 2 Zoom to Caltrans Postmiles

County:

CALWATER WATER SHED

Hydrologic Unit LOS ANGELES RIVER Hydrologic Area San Fernando Hydrologic Sub-Area #412.21

LS FACTOR:

Caltrans Water Quality Planning Tool

The Water Quality Planning Tool was created to help planners and designers comply with environmental permits. It uses a map interface to find information based on a project's location. This application is being updated for digital accessibility and will continue to function while updates are in progress.

CALWATER WATER SHED

Hydrologic Unit I OS ANGELES RIVER Hydrologic Area San Femando Hydrologic Sub-Area #412.21

	A	В	С
1	Sediment Risk Factor Worksheet		Entry
2	A) R Factor		
3	Analyses of data indicated that when factors other than rainfall are held constant, soil loss is directly proportional to a rainfall factor composed of total storm kinetic energy (E) times the maximum 30-min intensity (I30) (Wischmeier and Smith, 1958). The numerical value of R is the average annual sum of EI30 for storm events during a rainfall record of at least 22 years. "Isoerodent" maps were developed based on R values calculated for more than 1000 locations in the Western U.S. Refer to the link below to determine the R factor for the project site.		
4	http://www.epa.gov/waterdata/rainfall-erosivity-factor-calculator		
5	R Factor	[.] Value	35.8
6	B) K Factor (weighted average, by area, for all site soils)		
7	The soil-erodibility factor K represents: (1) susceptibility of soil or surface material to erosion, (2) transportability of the sediment, and (3) the amount and rate of runoff given a particular rainfall input, as measured under a standard condition. Fine-textured soils that are high in clay have low K values (about 0.05 to 0.15) because the particles are resistant to detachment. Coarse-textured soils, such as sandy soils, also have low K values (about 0.05 to 0.2) because of high infiltration resulting in low runoff even though these particles are easily detached. Medium-textured soils, such as a silt loam, have moderate K values (about 0.25 to 0.45) because they are moderately susceptible to particle detachment and they produce runoff at moderate rates. Soils having a high silt content are especially susceptible to erosion and have high K values, which can exceed 0.45 and can be as large as 0.65. Silt-size particles are easily detached and tend to crust, producing high rates and large volumes of runoff. Use Site-specific data must be submitted.		
8	Site-specific K factor guidance		
9	K Factor	[.] Value	0.32
10	C) LS Factor (weighted average, by area, for all slopes)		
11	The effect of topography on erosion is accounted for by the LS factor, which combines the effects of a hillslope-length factor, L, and a hillslope-gradient factor, S. Generally speaking, as hillslope length and/or hillslope gradient increase, soil loss increases. As hillslope length increases, total soil loss and soil loss per unit area increase due to the progressive accumulation of runoff in the downslope direction. As the hillslope gradient increases, the velocity and erosivity of runoff increases. Use the LS table located in separate tab of this spreadsheet to determine LS factors. Estimate the weighted LS for the site prior to construction.		
12	LS Table		
13	LS Factor Value		8.64
14	Watershed Frosion Estimate (=RvKvI S) in tons/acre		09.09
10			50.50
16 17 18 19 20	Site Sediment Risk Factor Low Sediment Risk: < 15 tons/acre		High

Receiving Water (RW) Risk Factor Worksheet		Score
A. Watershed Characteristics	yes/no	
A.1. Does the disturbed area discharge (either directly or indirectly) to a 303(d)-listed waterbody impaired by sediment ? For help with impaired waterbodies please check the attached worksheet or visit the link below:		
2006 Approved Sediment-impared WBs Worksheet		
http://www.waterboards.ca.gov/water_issues/programs/tmdl/303d_lists2006_epa.shtml	No	Low
A.2. Does the disturbed area discharge to a waterbody with designated beneficial uses of SPAWN & COLD & MIGRATORY?		
http://www.ice.ucdavis.edu/geowbs/asp/wbquse.asp_		

National Pollutant Discharge Elimination System (NPDES)

Rainfall Erosivity Factor Calculator for Small Construction Sites

EPA's stormwater regulations allow NPDES permitting authorities to waive NPDES permitting requirements for stormwater discharges from small construction sites if:

- the construction site disturbs less than five acres, and
- the rainfall erosivity factor ("R" in the revised universal soil loss equation, or RUSLE) value is less than five during the period of construction activity.

If your small construction project is located in an area where EPA is the permitting authority and your R factor is less than five, you qualify for a low erosivity waiver (LEW) from NPDES stormwater permitting. If your small construction project does not qualify for a waiver, then NPDES stormwater permit coverage is required. Follow the steps below to calculate your R-Factor.

LEW certifications are submitted through the NPDES eReporting Tool or "CGP-NeT". Several states that are authorized to implement the NPDES permitting program also accept LEWs. Check with your state NPDES permitting authority for more information.

- Submit your LEW through EPA's eReporting Tool
- List of states, Indian country, and territories where EPA is the permitting authority (pdf)
- <u>Construction Rainfall Erosivity Waiver Fact Sheet</u>
- Small Construction Waivers and Instructions (pdf)

The R-factor calculation can also be integrated directly into custom applications using the R-Factor web service.

For questions or comments, email EPA's CGP staff at cgp@epa.gov.

Select the estimated start and end dates of construction by clicking the boxes and using the dropdown calendar.

The period of construction activity begins at initial earth disturbance and ends with final stabilization.

Start Date: 01/15/2024

End Date: 07/01/2024

Locate your small construction project using the search box below or by clicking on the map.

Location: -118.6

-118.68865479528608 , 34.22521157937874

Search

Click the "Calculate R Factor" button below to calculate an R Factor for your small construction project.

Calculate R Factor

Facility Information

Start Date: 01/15/2024	Latitude: 34.2252
End Date: 07/01/2024	Longitude: -118.6887

Calculation Results

Rainfall erosivity factor (R Factor) = **35.8**

A rainfall erosivity factor of 5.0 or greater has been calculated for your site's period of construction.

You do NOT qualify for a waiver from NPDES permitting requirements and must seek Construction General Permit (CGP)

coverage. If you are located in an <u>area where EPA is the permitting authority (pdf)</u>, you must submit a Notice of Intent (NOI) through the <u>NPDES eReporting Tool (NeT)</u>. Otherwise, you must seek coverage under your state's CGP.

CHAPTER 810 – HYDROLOGY

Topic 811 – General

Index 811.1 – Introduction

Hydrology is often defined as: "A science dealing with the properties, distribution, and circulation of water on the surface of the land, in the soil and underlying rocks, and in the atmosphere." This is a very broad definition encompassing many disciplines relating to water. The highway engineer is principally concerned with surface hydrology and controlling surface runoff. Controlling runoff includes the hydraulic design of drainage features for both cross highway drainage (Chapter 820) and removal of runoff from the roadway (Chapter 830).

The runoff of water over land has long been studied and some rather sophisticated theories and methods have been proposed and developed for estimating flood flows. Most attempts to describe the process have been only partially successful at best. This is due to the complexity of the process and interactive factors. The random nature of rainfall, snowmelt, and other sources of water further complicate the process.

It should be understood that there are no exact methods for hydrologic analysis. Different methods that are commonly used may produce significantly different results for a specific site and particular situation.

Although hydrology is not an exact science, it is possible to obtain solutions which are functionally acceptable to form the basis for design of highway drainage facilities.

More complete information on the principles and engineering techniques pertaining to hydrology for transportation and highway engineers may be found in FHWA Hydraulic Design Series (HDS) No. 2, Highway Hydrology.

This chapter will focus primarily on the hydrologic analyses that are conducted for peak flow facilities for both transportation facility and cross drainage. In many cases, these peak flow facilities serve dual purposes and receive and convey storm water flows while meeting water quality criteria and other flow criteria independent of Chapter 810. Information related to the designer's responsibility for the hydrologic design of storm water flow facilities is contained in the Department's Project Planning and Design Guide. See: <u>http://www.dot.ca.gov/hq/oppd/stormwtr/ppdg.htm</u>

811.2 Objectives of Hydrologic Analysis

Regardless of the size or cost of the drainage feature the most important step prior to hydraulic design is estimating the discharge (rate of runoff) or volume of runoff that the drainage facility will be required to convey or control.

While some hydrologic analysis is necessary in establishing the quantity of surface water that must be considered in the design of all highway drainage facilities, the extent of such